If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8x^2+56x=1
We move all terms to the left:
8x^2+56x-(1)=0
a = 8; b = 56; c = -1;
Δ = b2-4ac
Δ = 562-4·8·(-1)
Δ = 3168
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3168}=\sqrt{144*22}=\sqrt{144}*\sqrt{22}=12\sqrt{22}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(56)-12\sqrt{22}}{2*8}=\frac{-56-12\sqrt{22}}{16} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(56)+12\sqrt{22}}{2*8}=\frac{-56+12\sqrt{22}}{16} $
| .6(9x-6)=4x-3(2x-8) | | .6(9x-6)=4x-3(2x-8 | | F(x)=9x^2+2 | | -2+d=1 | | 13u+4u-17u+4u-3u=4 | | 5(x-3)=2(4x+10) | | 7x+21=98 | | 6n+4-10=0 | | 5(x-3)=2(4x+0 | | 1/3y3−1/5y=5 | | 3(2x+5)=-3(x-4) | | 13u+4u–17u+4u–3u=4 | | 1/3y+3−1/5y=5. | | 5(x+-3)+(9)=46 | | 3(2x+2x+5)=-3(x-4) | | 5(x-3)-(-9)=46 | | (4x+15)=7x | | 3x+4x-2=7(x+2) | | 5y+12-2y=-7y-78 | | 4+3x=-29 | | (6-7i)/(-2-8i)=0 | | 12x^2-9=33x | | 5y+12-2y=-7-78 | | f(4)=5(4)-2 | | 3/2x-13=5x+1 | | (x+3)^2-1=35 | | -12k–-3k–14k+20k=-6 | | 10(4)^2x-1-5=7 | | 2(96+2w)=80-3w | | 8p–6p=12 | | (x+3)^2−1=35 | | x+1,5=6 |